Purpose
This paper aims to investigate the mechanical and thermal behavior, i.e. tensile strength, hardness, impact strength and glass transition temperatures of water-treated polyamide6/boric oxide (PA) composites.
Design/methodology/approach
The PA6 and PA6/boric oxide composites were exposed to an open environment and immersed in water for 15 days to analyze the effect of environmental humidity and frequent water immersion conditions on the composite’s mechanical and thermal properties. The tensile strength, elastic modulus, hardness and impact strength of materials were measured to identify the mechanical properties. The scanning electron microscopy (SEM), X-ray diffraction (XRD) and differential scanning calorimetry (DSC) characterizations were used to see the effect of humidity/water absorption on microstructure, crystallinity and glass transition temperatures.
Findings
The testing results revealed the loss in strength, elastic modulus and hardness, while the impact resistance was improved after exposure of materials to humidity/water. SEM images clearly show the formation of voids and XRD graphs revealed the loss in crystallinity after water immersion. The DSC plots of water immersed materials revealed the loss of glass transition temperatures up to 15°C.
Originality/value
The mechanical and thermal behavior of PA composites varies according to the surrounding atmosphere. Experiments were performed to investigate the influence of water treatment on the PA6/B2O3 composite’s mechanical and thermal properties. Water treatment resulted in the bonding between PA and water molecules, which generated voids in the materials. These voids generations are found the main reason for the low strength and hardness of water-treated materials.