Vacuum environments provide challenging conditions for tribological systems. MoS2 is one of the materials commonly known to provide low friction for both ambient and vacuum conditions. However, it also exhibits poor wear resistance and low ability to withstand higher contact pressures. In search of wear-resistant alternatives, superhard hydrogen-free tetrahedral amorphous carbon coatings (ta-C) are explored in this study. Although known to have excellent friction and wear properties in ambient atmospheres, their vacuum performance is limited when self-paired and with steel. In this study, the influence of the paired material on the friction behavior of ta-C is studied using counterbodies made from brass, bronze, copper, silicon carbide, and aluminum oxide, as well as from steel and ta-C coatings as reference materials. Brass was found to be the most promising counterbody material and was further tested in direct comparison to steel, as well as in long-term performance experiments. It was shown that the brass/ta-C friction pair exhibits low friction (µ < 0.1) and high wear in the short term, irrespective of ambient pressure, whereas in the long term, the friction coefficient increases due to a change in the wear mechanism. Al2O3 was identified as another promising sliding partner against ta-C, with a higher friction coefficient than that of brass (µ = 0.3), but considerably lower wear. All other pairings exhibited high friction, high wear, or both.