The present study is focused on the performance evaluation of MoS2, H3BO3, and multiwall carbon nanotubes (MWCNT) used as the potential oil additives in base oil for aluminum metal matrix composites (AMMC)–steel (EN31) tribocontact. Al–B4C composite is used for this purpose; based on a set of preliminary investigation under unlubricated and fresh oil lubrication, three different types of AMMCs (Al–SiC, Al–B4C, and Al–SiC–B4C) were used. A pin-on-disk tribometer is used for all the friction and wear tests under operating condition of load 9.8 N and sliding velocity of 0.5 m/s. From the particle-based wet tribology, it is clear that both the additives H3BO3 and MWCNT improve the friction as well as wear behavior for selected composite contacts. Multiwall carbon nanotubes emerged out as superior among all the additives, whereas MoS2 additives show marginal enhancement in frictional performance under given operating conditions. Fractography and morphological study of pin specimens are carried out to identify the underlying friction and wear mechanisms.