An aqueous solution-based doping strategy was developed for controlled doping impurity atoms into a ZnO nanowire (NW) lattice. Through this approach, antimony-doped ZnO NWs were successfully synthesized in an aqueous solution containing zinc nitrate and hexamethylenetetramine with antimony acetate as the dopant source. By introducing glycolate ions into the solution, a soluble antimony precursor (antimony glycolate) was formed and a good NW morphology with a controlled antimony doping concentration was successfully achieved. A doping concentration study suggested an antimony glycolate absorption doping mechanism. By fabricating and characterizing NW-based field effect transistors (FETs), stable p-type conductivity was observed. A field effect mobility of 1.2 cm(2) V(-1) s(-1) and a carrier concentration of 6 × 10(17) cm(-3) were achieved. Electrostatic force microscopy (EFM) characterization on doped and undoped ZnO NWs further illustrated the shift of the metal-semiconductor barrier due to Sb doping. This work provided an effective large-scale synthesis strategy for doping ZnO NWs in aqueous solution.