The distribution of nicotinamide adenine dinucleotide phosphate (NADPH)-diaphorase activity was studied in the cichlid fish Tilapia mariae during ontogenesis by the histochemical reaction of NADPH-diaphorase that indicates, in aldehyde-fixed tissue, the presence of nitric oxide synthase, which is the enzyme responsible for nitric oxide production. The first appearance of NADPH-diaphorase-positive neurons has a striking bilateral symmetry and occurs 20 h after fertilization (stage 8) in the olfactory placodes and in the neural tube where two clusters of positive neurons were seen in the diencephalon and in the rhombomere r4 of the hindbrain. Two days after fertilization (stage 10), the clusters of positive neurons showed labeled axons. The two longitudinal fiber bundles that arose from the diencephalic positive neurons ran caudally in the tract of the postoptic commissure. At stage 12 (3.5 days after fertilization), new populations of NADPH-diaphorase-positive neurons appeared in the telencephalon, in some diencephalic nuclei, and in the hypothalamus. Several trigeminal motor neurons showed strong NADPH-diaphorase activity, whereas the optic tectum and cerebellum were completely free of enzymatic activity. In the hindbrain, clusters of positive neurons were seen in the octavolateral region and in the region defined by the exit of the vagus nerve. In the cervical spinal cord, some ventral putative motor neurons were labeled. At stage 14 (5.5 days after fertilization), several periventricular neurons of the optic tectum and some neurons of the cerebellar lamina were labeled. Dorsal neurons, including a few large superficial neurons were also labeled in the cervical spinal cord. NADPH-diaphorase activity was seen in the neuropil area of the telencephalon, the target of olfactory inputs, and in the sensory dorso-lateral area of the spinal cord.