Contorted polycyclic aromatic hydrocarbons (PAHs) or nanographenes (NGs) have received increasing attention and are mostly prepared by "bottom-up" strategies. Apparently, systematically tuning the properties of NGs for application is important but challenging. Here, a new type of helix, azepine-embedded NGs, were designed and synthesized by the introduction of NH into the hexa-peri-hexabenzocoronene (HBC) core. We demonstrate that this nitrogen-doped NG can be functionalized via N−H derivatization. Through modifications to the NH site with a chiral auxiliary reagent, optical resolution of the chiral NG was achieved. Meanwhile, it was found that by introducing various aryl groups with electron-donating or electron-withdrawing substituents, the emission intensity and the fluorescence mechanism can be modulated. Compared to the original NH-containing NG, the modified derivative exhibited improved fluorescence efficiency and tunable emission wavelength. A functionalized structure of benzoic acid with considerably improved fluorescence efficiency, hydrophilicity, and membrane permeability to stain the live cells was proved.