Reactions of the dimeric cobalt complex [(L(-) Co)2 ] (1, L=[(2,6-iPr2 C6 H3 )NC(Me)]2 ) with polyarenes afforded a series of mononuclear and dinuclear complexes: [LCo(η(4) -anthracene)] (2), [LCo(μ-η(4) :η(4) -naphthalene)CoL] (3), and [LCo(μ-η(4) :η(4) -phenanthrene)CoL] (4). The pyrene complexes [{Na2 (Et2 O)2 }{LCo(μ-η(3) :η(3) -pyrene)CoL}] (5) and [{Na2 (Et2 O)3 }{LCo(η(3) -pyrene)}] (6) were obtained by treating precursor 1 with pyrene followed by reduction with Na metal. These complexes contain three potential redox active centers: the cobalt metal and both α-diimine and polyarene ligands. Through a combination of X-ray crystallography, EPR spectroscopy, magnetic susceptibility measurement, and DFT computations, the electronic configurations of these complexes were studied. It was determined that complexes 2-4 have a high-spin Co(I) center coupled with a radical α-diimine ligand and a neutral polyarene ligand. Whereas, the ligand L in complexes 5 and 6 has been further reduced to the dianion, the cobalt remains in a formal (I) oxidation state, and the pyrene molecule is either neutral or monoanionic.