Since the discovery of nuclear reactions in PdD x alloys at around room temperature in 1989, there have been accumulated very many experimental data sets showing existence of nuclear reactions in solid materials composed of transition metals and occluded hydrogen isotopes (let us call them the CF materials, for short) resulting in various nuclear products such as neutrons, tritium, transmuted nuclei, and others accompanied with large excess energies at relatively low temperatures up to 1000°C (let us call these whole events the cold fusion phenomenon (CFP), for short). As the cause of these nuclear reactions in the CFP, we have to accept the existence of the interactions between nuclei in the CF material through the nuclear force (let us call this interaction the nuclear-force interaction, for short) recognized its existence in the nucleus in the nuclear physics. We can classify the CF materials, i.e. materials where CFP occurs, into three groups: (1) metallic material including transition-metal hydrides (e.g. NiH x , AuH x ) and deuterides (e.g. PdD x , TiD x ), (2) carbonic material including hydrogen graphite (HC x ) and XLPE (cross-linked polyethylene) and (3) biological material including microorganisms, microbial cultures and biological tissues or organs. We will explain the characteristics of the CFP observed in each group in this paper. The nuclear reactions in the CF material gives rise to production of new particles from neutron, triton, and new nuclei with proton numbers Z up to 83 accompanying enormous excess energy. In addition to these events, there occurs the stabilization of unstable nuclei, including the decay-time shortening of radioactive nuclei, which is especially interesting to apply it to treat hazardous nuclear waste produced by the nuclear power plant. Finally, we give an overview of the CFP in relation to the solid state-nuclear physics and the solid state-nuclear chemistry where the nuclear-force interaction may play important roles to explain the riddles found but not given appropriate explanations in these old sciences hitherto.