This study reports the interfacial phenomenon of cefotaxime in combination with nonionic surfactants, Triton X-100 (TX-100) and Tween-80 (TW-80), and their mixed micellar formulations. Cefotaxime was enclosed in a micellar system to improve its solubility and effectiveness. TX-100 and TW-80 were used in an amphiphilic self-assembly process to create the micellar formulation. The effect of the addition of TX-100, a nonionic surfactant, on the ability of TW-80 to solubilize the drug was examined. The values of the critical micelle concentration (CMC) were determined via UV-Visible spectroscopy. Gibbs free energies (ΔGp and ΔGb), the partition coefficient (Kx), and the binding constant (Kb) were also computed. In a single micellar system, the partition coefficient (Kx) was found to be 33.78 × 106 and 2.78 × 106 in the presence of TX-100 and TW-80, respectively. In a mixed micellar system, the value of the partition coefficient for the CEF/TW-80 system is maximum (5.48 × 106) in the presence of 0.0019 mM of TX-100, which shows that TX-100 significantly enhances the solubilizing power of micelles. It has been demonstrated that these surfactants are effective in enhancing the solubility and bioavailability of therapeutic compounds. This study elaborates on the physicochemical characteristics and solubilization of reactive drugs in single and mixed micellar media. This investigation, conducted in the presence of surfactants, shows a large contribution to the binding process via both hydrogen bonding and hydrophobic interactions.