The response of low-level clouds to climate change has been identified as a major contributor to the uncertainty in climate sensitivity estimates among climate models. By analyzing the behaviour of low-level clouds in a hierarchy of models (coupled ocean-atmosphere model, atmospheric general circulation model, aqua-planet model, single-column model) using the same physical parameterizations, this study proposes an interpretation of the strong positive low-cloud feedback predicted by the IPSL-CM5A climate model under climate change. In a warmer climate, the model predicts an enhanced clear-sky radiative cooling, stronger surface turbulent fluxes, a deepening and a drying of the planetary boundary layer, and a decrease of tropical low-clouds in regimes of weak subsidence. We show that the decrease of low-level clouds critically depends on the change in the vertical advection of moist static energy from the free troposphere to the boundary-layer. This change is dominated by variations in the vertical gradient of moist static energy between the surface and the free troposphere just above the boundary-layer. In a warmer climate, the thermodynamical relationship of Clausius-Clapeyron increases this vertical gradient, and then the import by large-scale subsidence of low moist static energy and dry air into the boundary layer. This results in a decrease of the low-level cloudiness and in a weakening of the radiative cooling of the boundary layer by low-level clouds. The energetic framework proposed in this study might help to interpret inter-model differences in low-cloud feedbacks under climate change.Keywords Low-level cloud feedbacks Á Climate change Á Hierarchy of models Á Moist static energy budget
IntroductionAs reported by the 4th Assessment Report (AR4) of the Intergovernmental Panel on Climate Change, current climate models still exhibit a wide range of climate sensitivity estimates (Solomon et al. 2007). Inter-model differences in cloud-climate feedbacks remain the main cause of these inter-model differences (Soden and Held 2006), with a large contribution from low-level cloud feedbacks Bony et al. 2006;Webb et al. 2006). The relative credibility of the different low-cloud feedbacks predicted by climate models has not been firmly established so far, although an observational study combined with an analysis of model simulations suggests some evidence for a positive low-level cloud feedback (Clement et al. 2009).The difficulty of assessing the credibility of low-cloud feedbacks in climate models stems in part from the large number of processes and scales potentially involved in these feedbacks. Identifying and prioritizing better the primary physical controls of low-cloud feedbacks, at least in the world of climate models, would help to design relevant targeted process-oriented observational tests to assess these feedbacks. With this motivation in mind, the aim of this study is to analyze the physical mechanisms that primarily control the low-cloud feedback predicted by the This paper is a contribution ...