Abstract:In this paper, we demonstrate the superiority of vine copulas over conventional copulas when modeling the dependence structure of a credit portfolio. We show statistical and economic implications of replacing conventional copulas by vine copulas for a subportfolio of the Euro Stoxx 50 and the S&P 500 companies, respectively. Our study includes D-vines and R-vines where the bivariate building blocks are chosen from the Gaussian, the t and the Clayton family. Our findings are (i) the conventional Gauss copula is deficient in modeling the dependence structure of a credit portfolio and economic capital is seriously underestimated; (ii) D-vine structures offer a better statistical fit to the data than classical copulas, but underestimate economic capital compared to R-vines; (iii) when mixing different copula families in an R-vine structure, the best statistical fit to the data can be achieved which corresponds to the most reliable estimate for economic capital.