Building on the work of Bedford, Cooke and Joe, we show how multivariate data, which exhibit complex patterns of dependence in the tails, can be modelled using a cascade of pair-copulae, acting on two variables at a time. We use the pair-copula decomposition of a general multivariate distribution and propose a method for performing inference. The model construction is hierarchical in nature, the various levels corresponding to the incorporation of more variables in the conditioning sets, using pair-copulae as simple building blocks. Pair-copula decomposed models also represent a very flexible way to construct higher-dimensional copulae. We apply the methodology to a financial data set. Our approach represents the first step towards the development of an unsupervised algorithm that explores the space of possible pair-copula models, that also can be applied to huge data sets automatically.
Regular vine distributions which constitute a flexible class of multivariate dependence models are discussed. Since multivariate copulae constructed through pair-copula decompositions were introduced to the statistical community, interest in these models has been growing steadily and they are finding successful applications in various fields. Research so far has however been concentrating on so-called canonical and D-vine copulae, which are more restrictive cases of regular vine copulae. It is shown how to evaluate the density of arbitrary regular vine specifications. This opens the vine copula methodology to the flexible modeling of complex dependencies even in larger dimensions. In this regard, a new automated model selection and estimation technique based on graph theoretical considerations is presented. This comprehensive search strategy is evaluated in a large simulation study and applied to a 16-dimensional financial data set of international equity, fixed income and commodity indices which were observed over the last decade, in particular during the recent financial crisis. The analysis provides economically well interpretable results and interesting insights into the dependence structure among these indices.
We discuss tools for the evaluation of probabilistic forecasts and the critique of statistical models for count data. Our proposals include a nonrandomized version of the probability integral transform, marginal calibration diagrams, and proper scoring rules, such as the predictive deviance. In case studies, we critique count regression models for patent data, and assess the predictive performance of Bayesian age-period-cohort models for larynx cancer counts in Germany. The toolbox applies in Bayesian or classical and parametric or nonparametric settings and to any type of ordered discrete outcomes.
Using only bivariate copulas as building blocks, regular vine copulas constitute a flexible class of high‐dimensional dependency models. However, the flexibility comes along with an exponentially increasing complexity in larger dimensions. In order to counteract this problem, we propose using statistical model selection techniques to either truncate or simplify a regular vine copula. As a special case, we consider the simplification of a canonical vine copula using a multivariate copula as previously treated by Heinen & Valdesogo (2009) and Valdesogo (2009). We validate the proposed approaches by extensive simulation studies and use them to investigate a 19‐dimensional financial data set of Norwegian and international market variables. The Canadian Journal of Statistics 40: 68–85; 2012 © 2012 Statistical Society of Canada
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.