coming these shortcomings is a necessary condition for advancing from specialized Artificial Intelligence to general one, which requires the development of alternative approaches.The purpose of the paper is to present an overview of research in this direction, which has been carried out at the International Center for 25 years. The approach being developed stems from the ideas of N. M. Amosov and his scientific school. Connections to the Hyperdimensional Computing (HDC) and Vector Symbolic Architectures (VSA) field as well as to current brain research are also provided.Results. The concept of distributed data representation is outlined, including HDC/VSA that are capable of representing various data structures. The developed paradigm of Associative-Projective Neural Networks is considered: codevector representation of data, superposition and binding operations, general architecture, transformation of data of various types into codevectors, methods for solving problems and applications.
Conclusion. An adequate representation of data is one of the key issues within the Artificial Intelligence. The main area of research reviewed in this article is the problem of representing heterogeneous data in Artificial Intelligence systems in a unified format based on modeling the neural organization of the brain and the mechanisms of thinking. The approach under development is based on the hypothesis of distributed representation of information in the brain and allows representing various types of data, from numeric values to graphs, as vectors of large but fixed dimensionality.The most important advantages of the developed approach are the possibility of natural integration and efficient processing of various types of data and knowledge, a high degree of parallel computing, reliability and resistance to noise, the possibility of hardware implementation with high performance and energy efficiency, data processing based on associative similarity search -similar to how human memory works. This allows one to unify the methods, algorithms, and software and hardware for Artificial Intelligence systems, increase their scalability in terms of speed and memory with an increase in data volume and complexity.The research creates the basis for overcoming the shortcomings of current approaches to the specialized Artificial Intelligence based on Deep Neural Networks and paves the way for the creation of Artificial General Intelligence.