To accommodate structured approaches of neural computation, we propose a class of recurrent neural networks for indexing and storing sequences of symbols or analog data vectors. These networks with randomized input weights and orthogonal recurrent weights implement coding principles previously described in vector symbolic architectures (VSA) and leverage properties of reservoir computing. In general, the storage in reservoir computing is lossy, and crosstalk noise limits the retrieval accuracy and information capacity. A novel theory to optimize memory performance in such networks is presented and compared with simulation experiments. The theory describes linear readout of analog data and readout with winner-take-all error correction of symbolic data as proposed in VSA models. We find that diverse VSA models from the literature have universal performance properties, which are superior to what previous analyses predicted. Further, we propose novel VSA models with the statistically optimal Wiener filter in the readout that exhibit much higher information capacity, in particular for storing analog data. The theory we present also applies to memory buffers, networks with gradual forgetting, which can operate on infinite data streams without memory overflow. Interestingly, we find that different forgetting mechanisms, such as attenuating recurrent weights or neural nonlinearities, produce very similar behavior if the forgetting time constants are matched. Such models exhibit extensive capacity when their forgetting time constant is optimized for given noise conditions and network size. These results enable the design of new types of VSA models for the online processing of data streams.
Hyperdimensional (HD) computing is a promising paradigm for future intelligent electronic appliances operating at low power. This paper discusses tradeoffs of selecting parameters of binary HD representations when applied to pattern recognition tasks. Particular design choices include density of representations and strategies for mapping data from the original representation. It is demonstrated that for the considered pattern recognition tasks (using synthetic and real-world data) both sparse and dense representations behave nearly identically. This paper also discusses implementation peculiarities which may favor one type of representations over the other. Finally, the capacity of representations of various densities is discussed.
This two-part comprehensive survey is devoted to a computing framework most commonly known under the names Hyperdimensional Computing and Vector Symbolic Architectures (HDC/VSA). Both names refer to a family of computational models that use high-dimensional distributed representations and rely on the algebraic properties of their key operations to incorporate the advantages of structured symbolic representations and vector distributed representations. Notable models in the HDC/VSA family are Tensor Product Representations, Holographic Reduced Representations, Multiply-Add-Permute, Binary Spatter Codes, and Sparse Binary Distributed Representations but there are other models too. HDC/VSA is a highly interdisciplinary field with connections to computer science, electrical engineering, artificial intelligence, mathematics, and cognitive science. This fact makes it challenging to create a thorough overview of the field. However, due to a surge of new researchers joining the field in recent years, the necessity for a comprehensive survey of the field has become extremely important. Therefore, amongst other aspects of the field, this Part I surveys important aspects such as: known computational models of HDC/VSA and transformations of various input data types to high-dimensional distributed representations. Part II of this survey [84]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.