2021
DOI: 10.48550/arxiv.2109.04470
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Truth Discovery in Sequence Labels from Crowds

Abstract: Annotations quality and quantity positively affect the performance of sequence labeling, a vital task in Natural Language Processing. Hiring domain experts to annotate a corpus set is very costly in terms of money and time. Crowdsourcing platforms, such as Amazon Mechanical Turk (AMT), have been deployed to assist in this purpose. However, these platforms are prone to human errors due to the lack of expertise; hence, one worker's annotations cannot be directly used to train the model. Existing literature in an… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 47 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?