Background: Trypanosoma cruzi is a zoonotic pathogen of increasing relevance in the USA, with a growing number of autochthonous cases identified in recent years. The identification of parasite genotypes is key to understanding transmission cycles and their dynamics and consequently human infection. Natural T. cruzi infection is present in captive nonhuman primate colonies in the southern USA.Methods: We investigated T. cruzi genetic diversity through a metabarcoding and next-generation sequencing approach of the mini-exon gene to characterize the parasite genotypes circulating in nonhuman primates in southern Louisiana.
Results:We confirmed the presence of T. cruzi in multiple tissues of 12 seropositive animals, including heart, liver, spleen and gut. The TcI discrete typing unit (DTU) predominated in these hosts, and specifically TcIa, but we also detected two cases of coinfections with TcVI and TcIV parasites, unambiguously confirming the circulation of TcVI in the USA. Multiple mini-exon haplotypes were identified in each host, ranging from 6 to 11.
Conclusions:The observation of multiple T. cruzi sequence haplotypes in each nonhuman primate indicates possible multiclonal infections. These data suggest the participation of these nonhuman primates in local parasite transmission cycles and highlight the value of these naturally infected animals for the study of human Chagas disease.