bEhrlichia chaffeensis is an obligate intracellular bacterium that causes human monocytic ehrlichiosis (HME). To determine what host components are important for bacterial replication, we performed microarray analysis on Drosophila melanogaster S2 cells by comparing host gene transcript levels between permissive and nonpermissive conditions for E. chaffeensis growth. Five-hundred twenty-seven genes had increased transcript levels unique to permissive growth conditions 24 h postinfection. We screened adult flies that were mutants for several of the "permissive" genes for the ability to support Ehrlichia replication. Three additional D. melanogaster fly lines with putative mutations in pyrimidine metabolism were also tested. Ten fly lines carrying mutations in the genes CG6479, separation anxiety, chitinase 11, CG6364 (Uck2), CG6543 (Echs1), withered (whd), CG15881 (Ccdc58), CG14806 (Apop1), CG11875 (Nup37), and dumpy (dp) had increased resistance to infection with Ehrlichia. Analysis of RNA by quantitative real-time reverse transcription-PCR (qRT-PCR) confirmed that the bacterial load was decreased in these mutant flies compared to wild-type infected control flies. Seven of these genes (san, Cht11, Uck2, Echs1, whd, Ccdc58, and Apop1) encoded proteins that had mitochondrial functions or could be associated with proteins with mitochondrial functions. Treatment of THP-1 cells with double-stranded RNA to silence the human UCK2 gene indicates that the disruption of the uridine-cytidine kinase affects E. chaffeensis replication in human macrophages. Experiments with cyclopentenyl cytosine (CPEC), a CTP synthetase inhibitor and cytosine, suggest that the nucleotide salvage pathway is essential for E. chaffeensis replication and that it may be important for the provision of CTP, uridine, and cytidine nucleotides.
Ehrlichia chaffeensis is the causative agent of human monocytic ehrlichiosis (HME). There were 1,429 cases of HME in 2010 and 2011 (14). This represents a significant increase in the incidence of the disease since 2003 and qualifies HME as an emerging infectious disease (25). In addition to being reported in the United States, HME has also been documented in Africa, Europe, China, and Brazil (9,16,42,67). E. chaffeensis is an obligate intracellular bacterium. However, little is known about the parasitized-host requirements for bacterial replication.Drosophila melanogaster has been used to study a variety of intracellular pathogens. In particular, it has been successfully manipulated for the identification of genes involved in host-pathogen interactions. These pathogens include Listeria monocytogenes (1, 2), Chlamydia trachomatis (20), Mycobacterium marinum (1, 18, 30, 48), Francisella tularensis (51, 64), and the protozoan parasite Plasmodium gallinaceum (8,53).We previously demonstrated that E. chaffeensis is capable of infecting, completing its life cycle, and maintaining its pathogenicity in both Drosophila S2 cells (39) and adult flies (40). We have also identified growth conditions that were nonpermissiv...