We evaluate a new depth-averaged mathematical model that is designed to simulate all stages of debris-flow motion, from initiation to deposition. A companion paper shows how the model's five governing equations describe simultaneous evolution of flow thickness, solid volume fraction, basal pore-fluid pressure and two components of flow momentum. Each equation contains a source term that represents the influence of state-dependent granular dilatancy. Here, we recapitulate the equations and analyse their eigenstructure to show that they form a hyperbolic system with desirable stability properties.To solve the equations, we use a shock-capturing numerical scheme with adaptive mesh refinement, implemented in an open-source software package we call D-Claw. As tests of D-Claw, we compare model output with results from two sets of largescale debris-flow experiments. One set focuses on flow initiation from landslides triggered by rising pore-water pressures, and the other focuses on downstream flow dynamics, runout and deposition. D-Claw performs well in predicting evolution of flow speeds, thicknesses and basal pore-fluid pressures measured in each type of experiment. Computational results illustrate the critical role of dilatancy in linking coevolution of the solid volume fraction and porefluid pressure, which mediates basal Coulomb friction and thereby regulates debris-flow dynamics.