Contents 19I.20II.21III.21IV.27V.28VI.29VII.30VIII.3131References32 Summary Resprouting as a response to disturbance is now widely recognized as a key functional trait among woody plants and as the basis for the persistence niche. However, the underlying mechanisms that define resprouting responses to disturbance are poorly conceptualized. Resprouting ability is constrained by the interaction of the disturbance regime that depletes the buds and resources needed to fund resprouting, and the environment that drives growth and resource allocation. We develop a buds‐protection‐resources (BPR) framework for understanding resprouting in fire‐prone ecosystems, based on bud bank location, bud protection, and how buds are resourced. Using this framework we go beyond earlier emphases on basal resprouting and highlight the importance of apical, epicormic and below‐ground resprouting to the persistence niche. The BPR framework provides insights into: resprouting typologies that include both fire resisters (i.e. survive fire but do not resprout) and fire resprouters; the methods by which buds escape fire effects, such as thick bark; and the predictability of community assembly of resprouting types in relation to site productivity, disturbance regime and competition. Furthermore, predicting the consequences of global change is enhanced by the BPR framework because it potentially forecasts the retention or loss of above‐ground biomass.
We have detected a global mode of Earth deformation that is predicted by theory. Precise positioning of GPS sites distributed worldwide reveals that in February to March the northern hemisphere compresses (and the southern hemisphere expands), such that sites near the North Pole move downward by 3.0 mm, and sites near the equator are pulled northwards by 1.5 mm. The opposite pattern of deformation occurs in August to September. We identify this pattern as the degree-one spherical harmonic response of an elastic Earth to increased winter loading of soil moisture, snow cover, and atmosphere. Data inversion shows the load moment's trajectory as a great circle traversing the continents, peaking at 22
International audienceA 66-station GPS network spanning central Greece, first observed in 1989, has been occupied fully on three occasions: June 1989, October 1991 and May 1993. Subsets of this network bounding the Gulf of Korinthos have also been occupied in June 1995, October 1995, May 1996 and September/October 1997. The first three occupations were processed using a fiducial GPS methodology, whereas later surveys were processed using CODE precise orbits. Combination of data from different surveys to yield smooth site velocities requires global network translations at each epoch to compensate for errors in the realization of the reference frame. This method provides a posteriori estimates of the relative coordinate errors and reference frame noise. Only one earthquake, the 1995 June 15 Egion event, has caused significant local coseismic displacement, and its effects on the interseismic velocity field are removed using an elastic dislocation model.We constrain the orientation of the 100 yr triangulation–GPS velocity estimates of Davies et al. (1997) using 14 sites common to the two networks. The goodness of fit of this transformation indicates that the short-term and 100 yr geodetic estimates of deformation are highly compatible. We infer that short-term geodetic studies are capable of determining longer-term deformation rates provided that transient, local effects can be modelled. From the combined velocity field, we estimate principal strains and rigid-body rotation rates at points on a regular grid using data from neighbouring sites. Strain rates are high within the Gulf of Korinthos and much lower elsewhere. The extension rate across the Gulf of Korinthos increases from east to west. Comparison of the extension rate with historical and recent rates of seismic release of strain reveals significant medium-term seismic hazard in the western Gulf of Korinthos, and may also indicate long-term aseismic strain.
Since 1995 several ice shelves in the Northern Antarctic Peninsula have collapsed and triggered ice-mass unloading, invoking a solid Earth response that has been recorded at continuous GPS (cGPS) stations. A previous attempt to model the observation of rapid uplift following the 2002 breakup of Larsen B Ice Shelf was limited by incomplete knowledge of the pattern of ice unloading and possibly the assumption of an elastic-only mechanism. We make use of a new high resolution dataset of ice elevation change that captures ice-mass loss north of 66°S to first show that non-linear uplift of the Palmer cGPS station since 2002 cannot be explained by elastic deformation alone. We apply a viscoelastic model with linear Maxwell rheology to predict uplift since 1995 and test the fit to the Palmer cGPS time series, finding a well constrained upper mantle viscosity but less sensitivity to lithospheric thickness. We further constrain the best fitting Earth model by including six cGPS stations deployed after 2009 (the LARISSA network), with vertical velocities in the range 1.7 to 14.9 mm/yr. This results in a best fitting Earth model with lithospheric thickness of 100-140 km and upper mantle viscosity of View the MathML source6×1017-2×1018 Pas - much lower than previously suggested for this region. Combining the LARISSA time series with the Palmer cGPS time series offers a rare opportunity to study the time-evolution of the low-viscosity solid Earth response to a well-captured ice unloading event
We present spatiotemporal mass balance trends for the Antarctic Ice Sheet from a statistical inversion of satellite altimetry, gravimetry, and elastic‐corrected GPS data for the period 2003–2013. Our method simultaneously determines annual trends in ice dynamics, surface mass balance anomalies, and a time‐invariant solution for glacio‐isostatic adjustment while remaining largely independent of forward models. We establish that over the period 2003–2013, Antarctica has been losing mass at a rate of −84 ± 22 Gt yr−1, with a sustained negative mean trend of dynamic imbalance of −111 ± 13 Gt yr−1. West Antarctica is the largest contributor with −112 ± 10 Gt yr−1, mainly triggered by high thinning rates of glaciers draining into the Amundsen Sea Embayment. The Antarctic Peninsula has experienced a dramatic increase in mass loss in the last decade, with a mean rate of −28 ± 7 Gt yr−1 and significantly higher values for the most recent years following the destabilization of the Southern Antarctic Peninsula around 2010. The total mass loss is partly compensated by a significant mass gain of 56 ± 18 Gt yr−1 in East Antarctica due to a positive trend of surface mass balance anomalies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.