Bringing together leaf trait data spanning 2,548 species and 175 sites we describe, for the first time at global scale, a universal spectrum of leaf economics consisting of key chemical, structural and physiological properties. The spectrum runs from quick to slow return on investments of nutrients and dry mass in leaves, and operates largely independently of growth form, plant functional type or biome. Categories along the spectrum would, in general, describe leaf economic variation at the global scale better than plant functional types, because functional types overlap substantially in their leaf traits. Overall, modulation of leaf traits and trait relationships by climate is surprisingly modest, although some striking and significant patterns can be seen. Reliable quantification of the leaf economics spectrum and its interaction with climate will prove valuable for modelling nutrient fluxes and vegetation boundaries under changing land-use and climate.Green leaves are fundamental for the functioning of terrestrial ecosystems. Their pigments are the predominant signal seen from space. Nitrogen uptake and carbon assimilation by plants and the decomposability of leaves drive biogeochemical cycles. Animals, fungi and other heterotrophs in ecosystems are fuelled by photosynthate, and their habitats are structured by the stems on which leaves are deployed. Plants invest photosynthate and mineral nutrients in the construction of leaves, which in turn return a revenue stream of photosynthate over their lifetimes. The photosynthate is used to acquire mineral nutrients, to support metabolism and to re-invest in leaves, their supporting stems and other plant parts.There are more than 250,000 vascular plant species, all engaging in the same processes of investment and reinvestment of carbon and mineral nutrients, and all making enough surplus to ensure continuity to future generations. These processes of investment and re-investment are inherently economic in nature [1][2][3] . Understanding how these processes vary between species, plant functional types and the vegetation of different biomes is a major goal for plant ecology and crucial for modelling how nutrient fluxes and vegetation boundaries will shift with land-use and climate change. Data set and parametersWe formed a global plant trait network (Glopnet) to quantify leaf economics across the world's plant species. The Glopnet data set spans 2,548 species from 219 families at 175 sites (approximately 1% of the extant vascular plant species). The coverage of traits, species and sites is at least tenfold greater than previous data compilations [4][5][6][7][8][9][10][11] , extends to all vegetated continents, and represents a wide range of vegetation types, from arctic tundra to tropical rainforest, from hot to cold deserts, from boreal forest to grasslands. Site elevation ranges from below sea level (Death Valley, USA) to 4,800 m. Mean annual temperature (MAT) ranges from 216.5 8C to 27.5 8C; mean annual rainfall (MAR) ranges from 133 to 5,300 mm per year. This cove...
Contents 19I.20II.21III.21IV.27V.28VI.29VII.30VIII.3131References32 Summary Resprouting as a response to disturbance is now widely recognized as a key functional trait among woody plants and as the basis for the persistence niche. However, the underlying mechanisms that define resprouting responses to disturbance are poorly conceptualized. Resprouting ability is constrained by the interaction of the disturbance regime that depletes the buds and resources needed to fund resprouting, and the environment that drives growth and resource allocation. We develop a buds‐protection‐resources (BPR) framework for understanding resprouting in fire‐prone ecosystems, based on bud bank location, bud protection, and how buds are resourced. Using this framework we go beyond earlier emphases on basal resprouting and highlight the importance of apical, epicormic and below‐ground resprouting to the persistence niche. The BPR framework provides insights into: resprouting typologies that include both fire resisters (i.e. survive fire but do not resprout) and fire resprouters; the methods by which buds escape fire effects, such as thick bark; and the predictability of community assembly of resprouting types in relation to site productivity, disturbance regime and competition. Furthermore, predicting the consequences of global change is enhanced by the BPR framework because it potentially forecasts the retention or loss of above‐ground biomass.
JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact
Abstract. To recruit to reproductive size in fire-prone savannas, juvenile trees must avoid stem mortality (topkill) by fire. Theory suggests they either grow tall, raising apical buds above the flames, or wide, buffering the stem from fire. However, growing tall or wide is of no advantage without stem protection from fire. In Litchfield National Park, northern Australia, we explored the importance of bark thickness to stem survival following fire in a eucalypt-dominated tropical savanna. We measured bark thickness, prefire height, stem diameter and resprouting responses of small stems under conditions of low to moderate fire intensity. Fire induced mortality was low (,10%), topkill was uncommon (,11% of 5 m to 37% of 1 m tall stems) and epicormic resprouting was common. Topkill was correlated only with absolute bark thickness and not with stem height or width. Thus, observed height and diameter growth responses of small stems are likely different pathways to achieving bark thick enough to protect buds and the vascular cambium. Juvenile height was traded off against the cost of thick bark, so that wide stems were short with thicker bark for a given height. The fire resilience threshold for bark thickness differed between tall (4-5 mm) and wide individuals (8-9 mm), yet tall stems had lower P Topkill for a given bark thickness. Trends in P Topkill reflected eucalypt versus non-eucalypt differences. Eucalypts had thinner bark than non-eucalypts but lower P Topkill . With deeply embedded epicormic buds eucalypts do not need thick bark to protect buds and can allocate resources to height growth. Our data suggest the only 'strategy' for avoiding topkill in fireprone systems is to optimise bark thickness to maximise stem bud and cambium protection. Thus, escape height is the height at which bark protects the stem and a wide stem per se is insufficient protection from fire without thick bark. Consequently, absolute bark thickness is crucial to explanations of species differences in topkill, resprouting response and tree community composition in fire-prone savannas. Bark thickness and the associated mechanism of bud protection offer a proximate explanation for the dominance of eucalypts in Australian tropical savannas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.