2014
DOI: 10.1080/03605302.2014.892128
|View full text |Cite
|
Sign up to set email alerts
|

T-Coercivity for the Maxwell Problem with Sign-Changing Coefficients

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
3
0
1

Year Published

2014
2014
2024
2024

Publication Types

Select...
7
1

Relationship

2
6

Authors

Journals

citations
Cited by 37 publications
(4 citation statements)
references
References 33 publications
0
3
0
1
Order By: Relevance
“…Le cas général sera discuté dans d'autres articles. Nous traitons aussi des problèmes à changement de signe (c'est-à-dire, des problèmes qui ne sont pas fortement elliptiques) [3,4,10,11,5,6,29]. Le cas des domaines bornés sera discuté dans [27].…”
unclassified
“…Le cas général sera discuté dans d'autres articles. Nous traitons aussi des problèmes à changement de signe (c'est-à-dire, des problèmes qui ne sont pas fortement elliptiques) [3,4,10,11,5,6,29]. Le cas des domaines bornés sera discuté dans [27].…”
unclassified
“…The proposed asymptotic expansions approach is valid for arbitrary optical parameter a c (and complex-valued ones to some extent), one could also consider arbitrary double negative optical parameters b c and work with the double-negative PDE − div(a −1 ∇u) − b k 2 u = 0 (e.g. [11,21,3]). Then, to deduce from the quasi-pairs existence the presence of scattering resonances becomes difficult because the operator is no longer self-adjoint.…”
Section: Discussionmentioning
confidence: 99%
“…The T-coercivity approach is an alternative to Banach-Nečas-Babuška theory for the study of well-posedness and numerical approximation of non-coercive problems. T-coercivity was originally introduced for problems involving an invertible operator perturbed by a compact term [28,29] and problems with sign-changing coefficients, see for instance [19,[30][31][32][33]. More recently, it was applied to saddle-point problems [16,20].…”
Section: The T-coercivity Approachmentioning
confidence: 99%
“…Using ( 29), ( 30) and (31) to bound from below the right-hand side of ( 28) and rearranging terms, we obtain…”
Section: Remarkmentioning
confidence: 99%