Deep vein thrombosis (DVT) is a prevalent clinical venous thrombotic condition that often manifests independently or in conjunction with other ailments. Thrombi have the propensity to dislodge into the circulatory system, giving rise to complications such as pulmonary embolism, thereby posing a significant risk to the patient. Virchow proposed that blood stagnation, alterations in the vessel wall and hypercoagulation are primary factors contributing to the development of venous thrombosis. Vascular endothelial cells (VECs) constitute the initial barrier to the vascular wall and are a focal point of ongoing research. These cells exert diverse stimulatory effects on the bloodstream and secrete various regulatory factors that uphold the dynamic equilibrium between the coagulation and anticoagulation processes. MicroRNAs (miRNAs) represent a class of non-coding RNAs present in eukaryotes, characterized by significant genetic and evolutionary conservation and displaying high spatiotemporal expression specificity. Typically ranging from 20 to 25 bases in length, miRNAs can influence downstream gene transcription through RNA interference or by binding to specific mRNA sites. Consequently, advancements in understanding the molecular mechanisms of miRNAs, including their functionalities, involve modulation of vascular-associated processes such as cell proliferation, differentiation, secretion of inflammatory factors, migration, apoptosis and vascular remodeling regeneration. miRNAs play a substantial role in DVT formation via venous VECs. In the present review, the distinct functions of various miRNAs in endothelial cells are outlined and recent progress in comprehending their role in the pathogenesis and clinical application of DVT is elucidated. Contents 1. Introduction 2. miRNAs in endothelial cells regulate DVT 3. Clinical application of miRNAs in DVT 4. Conclusions and future perspectives