This video describes the use of whole body bioluminesce imaging (BLI) for the study of bacterial trafficking in live mice, with an emphasis on the use of bacteria in gene and cell therapy for cancer. Bacteria present an attractive class of vector for cancer therapy, possessing a natural ability to grow preferentially within tumors following systemic administration. Bacteria engineered to express the lux gene cassette permit BLI detection of the bacteria and concurrently tumor sites. The location and levels of bacteria within tumors over time can be readily examined, visualized in two or three dimensions. The method is applicable to a wide range of bacterial species and tumor xenograft types. This article describes the protocol for analysis of bioluminescent bacteria within subcutaneous tumor bearing mice. Visualization of commensal bacteria in the Gastrointestinal tract (GIT) by BLI is also described. This powerful, and cheap, real-time imaging strategy represents an ideal method for the study of bacteria in vivo in the context of cancer research, in particular gene therapy, and infectious disease. This video outlines the procedure for studying lux-tagged E. coli in live mice, demonstrating the spatial and temporal readout achievable utilizing BLI with the IVIS system.
Video LinkThe video component of this article can be found at http://www.jove.com/video/4318/ Protocol 1. Tumor Induction 1. For routine tumor induction, the minimum tumorigenic dose of cells suspended in 200 μl of serum-free culture medium was injected subcutaneously (s.c.) into the flank of infection free 6-8 week old female Balb/C or athymic MF1-nu/nu mice n=6 (Harlan, Oxfordshire, UK) (1 x 10 6 4T1 cells) using a 21-gauge syringe needle. The viability of cells used for inoculation was greater than 95 % as determined by visual count using a haemocytometer and Trypan Blue Dye Exclusion (Gibco). 2. Following tumor establishment, tumors were allowed to grow and develop and were monitored twice weekly. Tumor volume was calculated according to the formula V=(ab 2 ) Π/6, where a is the longest diameter of the tumor and b is the longest diameter perpendicular to diameter a.