Gene-mediated enzyme prodrug therapy (GDEPT) seeks to increase the therapeutic index of anti-neoplastic agents by promoting selective activation of relatively nontoxic drug derivatives at sites of specific enzyme expression. Glucuronide prodrugs are attractive for GDEPT due to their low toxicity, bystander effect in the interstitial tumor space and the large range of possible glucuronide drug targets. In this study, we expressed human, murine and Esherichia coli beta-glucuronidase on tumor cells and examined their in vitro and in vivo efficacy for the activation of glucuronide prodrugs of 9-aminocamptothecin and p-hydroxy aniline mustard. We show that (1) fusion of beta-glucuronidase to the Ig-like C(2)-type and Ig-hinge-like domains of the B7-1 antigen followed by the B7-1 transmembrane domain anchored high levels of active murine and human beta-glucuronidase on cells, (2) strong bystander killing of tumor cells was achieved in vitro by murine beta-glucuronidase activation of prodrug, (3) potent in vivo anti-tumor activity was achieved by prodrug treatment of tumors that expressed murine beta-glucuronidase and (4) the p-hydroxy aniline prodrug was more effective in vivo than the 9-aminocamptothecin prodrug. Our results demonstrate that surface expression of murine beta-glucuronidase for activation of a glucuronide prodrug of p-hydroxy aniline mustard may be useful for more selective therapy of cancer.
Purpose: This study is aimed at investigating the in vivo antitumor activity of a novel cellimpermeable glucuronide prodrug, 9-aminocamptothecin glucuronide (9ACG), and elucidating the synergistically antitumor effects of antiangiogenesis therapy by targeting the tumor microenvironment. Experimental Design:We analyzed the antitumor effects of 9ACG alone or combined with antiangiogenic monoclonal antibody DC101on human tumor xenografts by measuring tumor growth and mouse survival in BALB/c nu/nu nude and NOD/SCID mice. The drug delivery, immune response, and angiogenesis status in treated tumors were assessed by high performance liquid chromatography, immunohistochemistry, and immunofluorescence assays. Results: We developed a nontoxic and cell-impermeable glucuronide prodrug, 9ACG, which can only be activated by extracellular h-glucuronidase to become severely toxic. 9ACG possesses potent antitumor activity against human tumor xenografts in BALB/c nu/nu nude mice but not for tumors implanted in NOD/SCID mice deficient in macrophages and neutrophils, suggesting that these cells play an important role in activating 9ACG in the tumor microenvironment. Most importantly, antiangiogenic monoclonal antibody DC101 potentiated single-dose 9ACG antitumor activity and prolonged survival of mice bearing resistant human colon tumor xenografts by providing strong h-glucuronidase activity and prodrug delivery through enhancing inflammatory cell infiltration and normalizing tumor vessels in the tumor microenvironment. We also show that inflammatory cells (neutrophils) were highly infiltrated in advanced human colon cancer tissues compared with normal counterparts. Conclusions: Our study provides in vivo evidence that 9ACG has potential for prodrug monotherapy or in combination with antiangiognesis treatment for tumors with infiltration of macrophage or neutrophil inflammatory cells.
Human beta-glucuronidase, due to low intrinsic immunogenicity in humans, is an attractive enzyme for tumor-specific prodrug activation, but its utility is hindered by low activity at physiological pH. Here we describe the development of a high-throughput screening procedure for enzymatic activity based on the stable retention of fluorescent reaction product in mammalian cells expressing properly folded glycoproteins on their surface. We utilized this procedure on error-prone PCR and saturation mutagenesis libraries to isolate beta-glucuronidase tetramers that were up to 60-fold more active (k(cat)/K(m)) at pH 7.0 and were up to an order of magnitude more effective at catalyzing the conversion of two structurally disparate glucuronide prodrugs to anticancer agents. The screening procedure described here can facilitate investigation of eukaryotic enzymes requiring posttranslational modifications for biological activity.
CPT-11 is a clinically important prodrug that requires conversion into the active metabolite SN-38, a potent topoisomerase I poison, for antitumor activity. However, SN-38 is rapidly metabolized to the inactive SN-38 glucuronide (SN-38G) in the liver, which reduces the amount of SN-38 available for killing cancer cells. Here, we investigated if local expression of b-glucuronidase (bG) on cancer cells to catalytically convert SN38G to SN38 could enhance the antitumor activity of CPT-11. bG was tethered on the plasma membrane of three different human cancer cell lines: human colon carcinoma (LS174T), lung adenocarcinoma (CL1-5) and bladder carcinoma (EJ). Surface b-glucuronidase-expressing cells were 20 to 80-fold more sensitive to SN-38G than the parental cells. Intravenous CPT-11 produced significantly greater suppression of CL1-5 and LS174 T tumors that expressed bG as compared with unmodified tumors. Furthermore, an adenoviral vector expressing membrane-tethered bG (Ad.bG) increased the sensitivity of cancer cells to SN-38G even at multiplicity of infections as low as 0.16, indicating bystander killing of non-transduced cancer cells. Importantly, intratumoral injection of Ad.bG significantly enhanced the in vivo antitumor activity of CPT-11 as compared with treatment with CPT-11 or Ad vectors alone. This study shows that Ad.bG has potential to boost the therapeutic index of CPT-11.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.