Testicular cancer is the most common solid malignancy among young men. We downloaded data of testicular cancer patients from The Cancer Genome Atlas database to find novel genes in the testicular cancer microenviroment based on ESTIMATE algorithm-derived immune scores. A total of 156 cases of testicular cancer were included in this study and 165 cases of normal testicular tissues were used. We divided the testicular cancer patients into high-and low-score groups based on their immune scores. We identified 1,226 differentially expressed genes (fold change > 2, false discovery rate < 0.05), including 688 downregulated genes and 538 upregulated genes, between these two groups. The top Gene Ontology terms were involved in the immune response-regulating cell surface receptor signaling pathway, immune response-activating cell surface receptor signaling pathway, external side of the plasma membrane, and receptor ligand activity. By performing the Kyoto Encyclopedia of Genes and Genomes analysis, we demonstrated that cAMP signaling pathway was highly enriched among these differentially expressed genes. High expression of LINC01564, LINC02208, ODAM, RNA5SP111, and RNU6-196P were found to be associated with poor overall survival. The expression of genes was further validated by the Human Protein Atlas and only ALB and IFNG were demonstrated to be differentially expressed between testis tissue and testicular cancer tissue.
CPT-11 is a clinically important prodrug that requires conversion into the active metabolite SN-38, a potent topoisomerase I poison, for antitumor activity. However, SN-38 is rapidly metabolized to the inactive SN-38 glucuronide (SN-38G) in the liver, which reduces the amount of SN-38 available for killing cancer cells. Here, we investigated if local expression of b-glucuronidase (bG) on cancer cells to catalytically convert SN38G to SN38 could enhance the antitumor activity of CPT-11. bG was tethered on the plasma membrane of three different human cancer cell lines: human colon carcinoma (LS174T), lung adenocarcinoma (CL1-5) and bladder carcinoma (EJ). Surface b-glucuronidase-expressing cells were 20 to 80-fold more sensitive to SN-38G than the parental cells. Intravenous CPT-11 produced significantly greater suppression of CL1-5 and LS174 T tumors that expressed bG as compared with unmodified tumors. Furthermore, an adenoviral vector expressing membrane-tethered bG (Ad.bG) increased the sensitivity of cancer cells to SN-38G even at multiplicity of infections as low as 0.16, indicating bystander killing of non-transduced cancer cells. Importantly, intratumoral injection of Ad.bG significantly enhanced the in vivo antitumor activity of CPT-11 as compared with treatment with CPT-11 or Ad vectors alone. This study shows that Ad.bG has potential to boost the therapeutic index of CPT-11.
Glioblastoma (GBM) generally has a dismal prognosis, and it is associated with a poor quality of life as the disease progresses. However, the development of effective therapies for GBM has been deficient. Ubiquitin-conjugating enzyme E2T (UBE2T) is a member of the E2 family in the ubiquitin-proteasome pathway and a vital regulator of tumour progression, but its role in GBM is unclear. In this study, we aimed to clarify the role of UBE2T in GBM. Bioinformatics analysis identified UBE2T as an independent risk factor for gliomas. Immunohistochemistry was used to measure UBE2T expression in GBM and normal tissue samples obtained from patients with GBM. The effects of UBE2T on GBM cell invasion and migration were analysed using the Transwell assay. BALB/c nude mice were used for the in vivo assays. Immunoblotting and immunoprecipitation were performed to determine the molecular mechanisms. UBE2T was highly expressed in GBM tissues, and its expression was linked to a poor prognosis. In vitro, depletion of UBE2T significantly suppressed cell invasion and migration. Moreover, UBE2T depletion suppressed the growth of GBM subcutaneous tumours in vivo. Further experiments revealed that UBE2T suppressed invasion and migration by regulating epithelial- mesenchymal transition (EMT) via stabilising GRP78 in GBM cells. We uncovered a novel UBE2T/GRP78/EMT regulatory axis that modulates the malignant progression and recurrence of GBM, indicating that the axis might be a valuable therapeutic target.
The specificity of prostate-specific antigen (PSA) for early intervention in repeat biopsy is unsatisfactory. Prostate cancer antigen 3 (PCA3) may be more accurate in outcome prediction than other methods for the early detection of prostate cancer (PCa). However, the results were inconsistent in repeated biopsies. Therefore, we performed a systematic review and meta-analysis to evaluate the role of PCA3 in outcome prediction. A systematic bibliographic search was conducted for articles published before April 2013, using PubMed, Medline, Web of Science, Embase and other databases from health technology assessment agencies. The quality of the studies was assessed on the basis of QUADAS criteria. Eleven studies of diagnostic tests with moderate to high quality were selected. A meta-analysis was carried out to synthesize the results. The results of the meta-analyses were heterogeneous among studies. We performed a subgroup analysis (with or without inclusion of high-grade prostatic intraepithelial neoplasia (HGPIN) and atypical small acinar proliferation (ASAP)). Using a PCA3 cutoff of 20 or 35, in the two sub-groups, the global sensitivity values were 0.93 or 0.80 and 0.79 or 0.75, specificities were 0.65 or 0.44 and 0.78 or 0.70, positive likelihood ratios were 1.86 or 1.58 and 2.49 or 1.78, negative likelihood ratios were 0.81 or 0.43 and 0.91 or 0.82 and diagnostic odd ratios (ORs) were 5.73 or 3.45 and 7.13 or 4.11, respectively. The areas under the curve (AUCs) of the summary receiver operating characteristic curve were 0.85 or 0.72 and 0.81 or 0.69, respectively. PCA3 can be used for repeat biopsy of the prostate to improve accuracy of PCa detection. Unnecessary biopsies can be avoided by using a PCa cutoff score of 20.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.