Background Prostate cancer (PCa) remains the second leading cause of deaths due to cancer in the United States in men. The aim of this study was to perform an integrative epigenetic analysis of prostate adenocarcinoma to explore the epigenetic abnormalities involved in the development and progression of prostate adenocarcinoma. The key DNA methylation-driven genes were also identified. Methods Methylation and RNA-seq data were downloaded for The Cancer Genome Atlas (TCGA). Methylation and gene expression data from TCGA were incorporated and analyzed using MethylMix package. Methylation data from the Gene Expression Omnibus (GEO) were assessed by R package limma to obtain differentially methylated genes. Pathway analysis was performed on genes identified by MethylMix criteria using ConsensusPathDB. Gene Ontology (GO) term enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were also applied for the identification of pathways in which DNA methylation-driven genes significantly enriched. The protein–protein interaction (PPI) network and module analysis in Cytoscape software were used to find the hub genes. Two methylation profile (GSE112047 and GSE76938) datasets were utilized to validate screened hub genes. Immunohistochemistry of these hub genes were evaluated by the Human Protein Atlas. Results A total of 553 samples in TCGA database, 32 samples in GSE112047 and 136 samples in GSE76938 were included in this study. There were a total of 266 differentially methylated genes were identified by MethylMix. Plus, a total of 369 differentially methylated genes and 594 differentially methylated genes were identified by the R package limma in GSE112047 and GSE76938, respectively. GO term enrichment analysis suggested that DNA methylation-driven genes significantly enriched in oxidation–reduction process, extracellular exosome, electron carrier activity, response to reactive oxygen species, and aldehyde dehydrogenase [NAD(P)+] activity. KEGG pathway analysis found DNA methylation-driven genes significantly enriched in five pathways including drug metabolism—cytochrome P450, phenylalanine metabolism, histidine metabolism, glutathione metabolism, and tyrosine metabolism. The validated hub genes were MAOB and RTP4. Conclusions Methylated hub genes, including MAOB and RTP4, can be regarded as novel biomarkers for accurate PCa diagnosis and treatment. Further studies are needed to draw more attention to the roles of these hub genes in the occurrence and development of PCa.
Testicular cancer is the most common solid malignancy among young men. We downloaded data of testicular cancer patients from The Cancer Genome Atlas database to find novel genes in the testicular cancer microenviroment based on ESTIMATE algorithm-derived immune scores. A total of 156 cases of testicular cancer were included in this study and 165 cases of normal testicular tissues were used. We divided the testicular cancer patients into high-and low-score groups based on their immune scores. We identified 1,226 differentially expressed genes (fold change > 2, false discovery rate < 0.05), including 688 downregulated genes and 538 upregulated genes, between these two groups. The top Gene Ontology terms were involved in the immune response-regulating cell surface receptor signaling pathway, immune response-activating cell surface receptor signaling pathway, external side of the plasma membrane, and receptor ligand activity. By performing the Kyoto Encyclopedia of Genes and Genomes analysis, we demonstrated that cAMP signaling pathway was highly enriched among these differentially expressed genes. High expression of LINC01564, LINC02208, ODAM, RNA5SP111, and RNU6-196P were found to be associated with poor overall survival. The expression of genes was further validated by the Human Protein Atlas and only ALB and IFNG were demonstrated to be differentially expressed between testis tissue and testicular cancer tissue.
Benign prostatic hyperplasia (BPH) is one of the most common causes of lower urinary tract symptoms (LUTS) in elderly man. However, the underlying molecular mechanisms of BPH have not been completely elucidated. We identified the key genes and pathways by using analysis of Gene Expression Omnibus (GEO) database.Differentially expressed genes (DEGs) were identified using edgeR. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed for the DEGs by Database for Annotation, Visualization and Integrated Discovery (DAVID) database and ConsensusPathDB, respectively. Then, proteinprotein interaction (PPI) networks were established by the Search Tool for the Retrieval of Interacting Genes (STRING) database and visualized by Cytoscape software. Finally, we identified 660 DEGs ultimately including 268 upregulated genes and 392 downregulated genes. GO analysis revealed that DEGs were mainly enriched in extracellular exosome, identical protein binding, mitochondrial adenosine triphosphate (ATP) synthesis coupled proton transport, extracelluar matrix, focal adhesion, cytosol, Golgi apparatus, cytoplasm, protein binding, and Golgi membrane. Focal adhesion pathway, FoxO signaling pathway, and autophagy pathway were selected.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.