BackgroundLight is one of the most important factors regulating plant growth and development. Light-sensing photoreceptors tightly regulate gene expression to control photomorphogenic responses. Although many levels of gene expression are modulated by photoreceptors, regulation at the mRNA splicing step remains unclear.ResultsWe performed high-throughput mRNA sequencing to analyze light-responsive changes in alternative splicing in the moss Physcomitrella patens, and found that a large number of alternative splicing events were induced by light in the moss protonema. Light-responsive intron retention preferentially occurred in transcripts involved in photosynthesis and translation. Many of the alternatively spliced transcripts were expressed from genes with a function relating to splicing or light signaling, suggesting a potential impact on pre-mRNA splicing and photomorphogenic gene regulation in response to light. Moreover, most light-regulated intron retention was induced immediately upon light exposure, while motif analysis identified a repetitive GAA motif that may function as an exonic regulatory cis element in light-mediated alternative splicing. Further analysis in gene-disrupted mutants was consistent with a function for multiple red-light photoreceptors in the upstream regulation of light-responsive alternative splicing.ConclusionsOur results indicate that intensive alternative splicing occurs in non-vascular plants and that, during photomorphogenesis, light regulates alternative splicing with transcript selectivity. We further suggest that alternative splicing is rapidly fine-tuned by light to modulate gene expression and reorganize metabolic processes, and that pre-mRNA cis elements are involved in photoreceptor-mediated splicing regulation.
Paenibacillus macerans TKU029 can produce exopolysaccharides (EPSs; 3.46 g/L) and a biosurfactant (1.78 g/L) in a medium with 2 % (w/v) squid pen powder as the sole carbon/nitrogen source. The biosurfactant can reduce the surface tension of water from 72.30 to 35.34 mN/m at a concentration of 2.76 g/L and reach an emulsification index of 56 % after a 24-h reaction with machine oil. This biosurfactant is stable at 121 °C for 20 min, over a pH range from 3 to 11, and in <5 % salt solutions. It also shows significant antimicrobial activity, which remains active after treatment at 121 °C and at pH values from 4 to 10, against Escherichia coli BCRC13086, Staphylococcus aureus BCRC10780, Fusarium oxysporum BCRC32121 and Aspergillus fumigatus BCRC30099. Furthermore, human skin shows from 37.3 to 44.3 % hydration after being treated with TKU029 EPSs for 180 min. These results imply that EPSs and the biosurfactant from this strain have potential in cosmetics, for removal of oil contamination, and as antimicrobial agents.
Three experiments were conducted to evaluate the effects of feeding dietary concentrations of organic Zn as a Zn-polysaccharide (Quali Tech Inc., Chaska, MN) or as a Zn-proteinate (Alltech Inc., Nicholasville, KY) on growth performance, plasma concentrations, and excretion in nursery pigs compared with pigs fed 2,000 ppm inorganic Zn as ZnO. Experiments 1 and 2 were growth experiments, and Exp. 3 was a balance experiment, and they used 306, 98, and 20 crossbred pigs, respectively. Initially, pigs averaged 17 d of age and 5.2 kg BW in Exp. 1 and 2, and 31 d of age and 11.2 kg BW in Exp. 3. The basal diets for Exp. 1, 2, and 3 contained 165 ppm supplemental Zn as ZnSO4 (as-fed basis), which was supplied from the premix. In Exp. 1, the Phase 1 (d 1 to 14) basal diet was supplemented with 0, 125, 250, 375, or 500 ppm Zn as Zn-polysaccharide (as-fed basis) or 2,000 ppm Zn as ZnO (as-fed basis). All pigs were then fed the same Phase 2 (d 15 to 28) and Phase 3 (d 29 to 42) diets. In Exp. 2, both the Phase 1 and 2 basal diets were supplemented with 0, 50, 100, 200, 400, or 800 ppm Zn as Zn-proteinate (as-fed basis) or 2,000 ppm Zn as ZnO (as-fed basis). For the 28-d Exp. 3, the Phase 2 basal diet was supplemented with 0, 200, or 400 ppm Zn as Zn-proteinate, or 2,000 ppm Zn as ZnO (as-fed basis). All diets were fed in meal form. In Exp. 1, 2, and 3, pigs were bled on d 14, 28, or 27, respectively, to determine plasma Zn and Cu concentrations. For all three experiments, there were no overall treatment differences in ADG, ADFI, or G:F (P = 0.15, 0.22, and 0.45, respectively). However, during wk 1 of Exp. 1, pigs fed 2,000 ppm Zn as ZnO had greater (P < or = 0.05) ADG and G:F than pigs fed the basal diet. In all experiments, pigs fed a diet containing 2,000 ppm Zn as ZnO had higher plasma Zn concentrations (P < 0.10) than pigs fed the basal diet. In Exp. 1 and 3, pigs fed 2,000 ppm Zn as ZnO had higher fecal Zn concentrations (P < 0.01) than pigs fed the other dietary Zn treatments. In conclusion, organic Zn either as a polysaccharide or a proteinate had no effect on growth performance at lower inclusion rates; however, feeding lower concentrations of organic Zn greatly decreased the amount of Zn excreted.
Two 28-d experiments were conducted to evaluate the efficacy of low dietary concentrations of Cu as Cu-proteinate compared with 250 ppm Cu as CuSO4 with growth performance, plasma Cu concentrations, and Cu balance of weanling swine as the criteria. In the production study (Exp. 1), 240 crossbred pigs that averaged 19.8 d of age and 6.31 kg BW initially were group-fed (two or three pigs per pen) the basal diets (Phase 1: d 0 to 14 and Phase 2: d 14 to 28) supplemented with 0 (control), 25, 50, 100, or 200 ppm Cu as Cu-proteinate, or 250 ppm Cu as CuSO4 (as-fed basis). The basal diets contained 16.5 ppm Cu supplied as CuSO4 before supplementation with Cu-proteinate or 250 ppm Cu as CuSO4. There were quadratic responses (P < or = 0.05) in ADFI and ADG for wk 1, Phases 1 and 2, and overall because ADFI was higher for pigs fed 25 or 50 ppm Cu as Cu-proteinate, and ADG increased with increasing Cu-proteinate up to 50 ppm Cu. The Cu-proteinate treatment groups combined had a higher (P < or = 0.05) Phase 2 and overall ADFI and ADG than the CuSO4 group. In the mineral balance study (Exp. 2), 20 crossbred barrows that averaged 35 d of age and 11.2 kg/BW initially were placed in individual metabolism pens with total urine and fecal grab sample collections on d 22 to 26. Treatments were the basal Phase 2 diet supplemented with 0, 50, or 100 ppm Cu as Cu-proteinate, or 250 ppm Cu as CuSO4 (as-fed basis). Treatments did not differ in growth performance criteria. There were linear increases (P < 0.001) in Cu absorption, retention, and excretion (milligrams per day) with increasing Cu-proteinate. Pigs fed 100 ppm Cu as Cu-proteinate absorbed and retained more Cu and excreted less Cu (mg/d, P < or = 0.003) than pigs fed 250 ppm Cu as CuSO4. Plasma Cu concentrations increased linearly (P = 0.06) with increasing Cu-proteinate. In conclusion, weanling pig growth performance was increased by 50 or 100 ppm Cu as Cu-proteinate in our production Exp. 1, but not in our balance Exp. 2, compared with 250 ppm Cu as CuSO4. However, 50 or 100 ppm Cu as Cu-proteinate increased Cu absorption and retention, and decreased Cu excretion 77 and 61%, respectively, compared with 250 ppm Cu as CuSO4.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.