Search citation statements
Paper Sections
Citation Types
Publication Types
Relationship
Authors
Journals
The treatment and management of early stage estrogen receptor positive (ER1) breast cancer is hindered by the difficulty in identifying patients who require adjuvant chemotherapy in contrast to those that will respond to hormonal therapy. To distinguish between the more and less aggressive breast tumors, which is a fundamental criterion for the selection of an appropriate treatment plan, Oncotype DX (ODX) and other gene expression tests are typically employed. While informative, these gene expression tests are expensive, tissue destructive, and require specialized facilities. Bloom-Richardson (BR) grade, the common scheme employed in breast cancer grading, has been shown to be correlated with the Oncotype DX risk score. Unfortunately, studies have also shown that the BR grade determined experiences notable inter-observer variability. One of the constituent categories in BR grading is the mitotic index. The goal of this study was to develop a deep learning (DL) classifier to identify mitotic figures from whole slides images of ER+ breast cancer, the hypothesis being that the number of mitoses identified by the DL classifier would correlate with the corresponding Oncotype DX risk categories. The mitosis detector yielded an average F-score of 0.556 in the AMIDA mitosis dataset using a 6-fold validation setup. For a cohort of 174 whole slide images with early stage ER+ breast cancer for which the corresponding Oncotype DX score was available, the distributions of the number of mitoses identified by the DL classifier was found to be significantly different between the high vs low Oncotype DX risk groups (P < 0.01). Comparisons of other risk groups, using both ODX score and histological grade, were also found to present significantly different automated mitoses distributions. Additionally, a support vector machine classifier trained to separate low/ high Oncotype DX risk categories using the mitotic count determined by the DL classifier yielded a 83.19% classification accuracy.
The treatment and management of early stage estrogen receptor positive (ER1) breast cancer is hindered by the difficulty in identifying patients who require adjuvant chemotherapy in contrast to those that will respond to hormonal therapy. To distinguish between the more and less aggressive breast tumors, which is a fundamental criterion for the selection of an appropriate treatment plan, Oncotype DX (ODX) and other gene expression tests are typically employed. While informative, these gene expression tests are expensive, tissue destructive, and require specialized facilities. Bloom-Richardson (BR) grade, the common scheme employed in breast cancer grading, has been shown to be correlated with the Oncotype DX risk score. Unfortunately, studies have also shown that the BR grade determined experiences notable inter-observer variability. One of the constituent categories in BR grading is the mitotic index. The goal of this study was to develop a deep learning (DL) classifier to identify mitotic figures from whole slides images of ER+ breast cancer, the hypothesis being that the number of mitoses identified by the DL classifier would correlate with the corresponding Oncotype DX risk categories. The mitosis detector yielded an average F-score of 0.556 in the AMIDA mitosis dataset using a 6-fold validation setup. For a cohort of 174 whole slide images with early stage ER+ breast cancer for which the corresponding Oncotype DX score was available, the distributions of the number of mitoses identified by the DL classifier was found to be significantly different between the high vs low Oncotype DX risk groups (P < 0.01). Comparisons of other risk groups, using both ODX score and histological grade, were also found to present significantly different automated mitoses distributions. Additionally, a support vector machine classifier trained to separate low/ high Oncotype DX risk categories using the mitotic count determined by the DL classifier yielded a 83.19% classification accuracy.
Cancer staging and grading are used to predict the clinical behavior of malignancies, establish appropriate therapies, and facilitate exchange of precise information between clinicians. The internationally accepted criterion for cancer staging, the tumor-node-metastasis (TNM) system, includes: (1) tumor size and local growth (T), (2) extent of lymph node metastases (N), and (3) occurrence of distant metastases (M). Clinical stage is established before initiation of therapy and is determined by physical examination, laboratory findings, and imaging studies. Pathologic stage is determined following surgical exploration of disease and histologic examination of tissue. The TNM classification system has evolved over 70 years to accommodate increasing knowledge about cancer biology. Molecular technologies such as genomic and proteomic profiling of tumors could eventually be incorporated into the TNM staging system. This chapter describes the current TNM system using breast, lung, ovarian, and prostate cancer examples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.