This project involves discovering the electronic and magnetic properties of nanometer-sized phosphorene structures with triangular shapes in both zigzag and armchair termination types. The goal is to discuss the relationship between the electronic states belonging to the different conditions of these phosphorene quantum dots and their intrinsic magnetic properties. For this purpose, we consider electronic interactions utilizing the spin-polarized density functional theory calculations, and then the results compare with the data generated from tight-binding calculations. Both descriptions yield mid-gap states in the spectrum of ferromagnetic structures. Our results in non-spin computations without any geometry optimization were matched by tight-binding calculations which shows that the tight-binding method is an inefficient approximation in analyzing the optimized spin samples. Unlike graphene, in our spin-polarized calculations, we have obtained empty mid-gap states in the spectrum of ferromagnetic triangular phosphorene quantum dots. The edge atoms of these structures are known as the magnetic atoms with an unequal contribution of spin up and spin down. To prevent deforming the initial structures, the dangling bonds at the edge atoms were passivated in two types, fully hydrogenated and partial passivation with oxygen atoms. Oxygen doping was required for introducing magnetism to the non-spin edges of the fully hydrogenated case.