We report optoelectronic properties of ultra-narrow blue phosphorene nanoribbons (BPNRs) within the state-of-the-art density functional theory framework.
Free standing transparent PNC (Polymer nanocomposite) films based on PEO/PAN + NaPF 6 with different concentration (wt./wt.) filler of nano sized (TiO 2 ) is synthesized by using standard solution cast technique. HRXRD (High resolution X-ray diffraction) and FESEM (Field emission scanning electron microscopy) have been performed to see the structural and microstructural behavior of the PNC films. The microscopic interaction among polymer, salt and nano-ceramic filler has been analyzed by FTIR (Fourier transformed infra-red) spectroscopy. The reduction of ion pair formation in polymeric separator is clearly observed on addition of nano-filler in the polymer salt complex film. Electrical (ionic/electronic) conductivity has been estimated (~ 10 -4 S/cm) optimized PNC films concentration of nanofiller (15 Wt.%). The estimated value of electrical conductivity is well corroborated by FTIR study. Thermal analysis has been done with thermo gravimetry analysis to find out thermal stability of PNC films. Transport properties associated due to majority mobile carriers ions and only negligible participation from electrons was observed through transport number analysis. The band gap (i.e. direct as well as indirect) decreases on the addition of nano-filler observed from the optical analysis. The estimated result of the prepared PNC films are at par with desired value for the device application.
Electronic and dielectric properties of β-phosphorene nanoflakes in various configurations using density functional theory are reported. The tunable energy gap and dielectric response make these nanoflakes potential candidates for optoelectronic device applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.