Polyimide memory materials with a donoracceptor structure based on a charge-transfer mechanism exhibit great potential for next-generation information storage technology due to their outstanding high-temperature resistance and good dimensional and chemical stability. Precisely controlling memory performance by limited chemical decoration is one of core challenges in this field. Most reported work mainly focuses on designing novel and elaborate electron donors or acceptors for the expected memory behavior of polyimides; this takes a lot of time and is not always efficacious. Herein, we report a series of porphyrinated copolyimides coPIÀ Znx (x = 5, 10, 20, 50, 80), where x represents the mole percentage of Zn ion in the central core of the porphyrin. Experimental and theoretical analysis indicate that the Zn ion could play a vital bridge role in promoting the formation and stabilization of a charge-transfer complex by enhancing the hybridization of local and charge transfer (HLCT) excitations of porphyrinated polyimides, endowing coPIÀ Znx with volatile random access memory performance and continuously tunable retention time. This work could provide one simple strategy to precisely regulate memory performance merely by altering the metal content in porphyrinated polyimides.