Benzimidazole derivatives are well-known biologically active substances, and therefore, they are mostly synthesised for therapeutic purposes. However, such heteroaromatic molecular systems own structure-related properties that enable a variety of applications, especially in optical science. Multifunctionality of the benzimidazole unit, such as electron accepting ability, π-bridging, chromogenic pH sensitivity/switching and metal-ion chelating properties, makes it an exceptional structural candidate for the design of optical chemical sensors and functional materials. Development of smart molecular sensors and novel (nano)materials is the emerging trend observed in materials and optical sensing science in general, in which the benzimidazole molecular systems strongly contribute and participate. In this chapter, we summarised recent advances in optical sensing (nano)materials that incorporate the benzimidazole structural moiety. Solid-state optical sensing systems, including self-assembled molecular materials based on benzimidazoles, are reviewed and discussed. In addition, immobilisation of benzimidazole derivatives onto or into various substrates and matrices, such as organic and inorganic polymers, bulk membranes and nanoparticles, utilising different chemical and physical methods, is presented and analysed.