The 3-Iodo-1-nitrosonaphthalene-2-ol (I-NON) was obtained by the copper(II)-mediated iodination of 1-nitroso-2-naphthol (NON). The suitable reactants and optimized reaction conditions, providing 94% NMR yield of I-NON, included the usage of Cu(OAc)2·H2O and 1:2:8 CuII/NON/I2 molar ratio between the reactants. The obtained I-NON was characterized by elemental analyses (C, H, N), high-resolution ESI+-MS, 1H and 13C{1H} NMR, FTIR, UV-vis spectroscopy, TGA, and X-ray crystallography (XRD). The copper(II) complexes bearing deprotonated I-NON were prepared as follows: cis-[Cu(I-NON–H)(I-NON)](I3) (1) was obtained by the reaction between Cu(NON-H)2 and I2 in CHCl3/MeOH, while trans-[Cu(I-NON–H)2] (2) was synthesized from I-NON and Cu(OAc)2 in MeOH. Crystals of trans-[Cu(I-NON–H)2(THF)2] (3) and trans-[Cu(I-NON–H)2(Py)2] (4) were precipitated from solutions of 2 in CHCl3/THF and Py/CHCl3/MeOH mixtures, respectively. The structures of 1 and 3–4 were additionally verified by X-ray crystallography. The characteristic feature of the structures of 1 and 3 is the presence of intermolecular halogen bonds with the involvement of the iodine center of the metal-bound deprotonated I-NON. The nature of the I···I and I···O contacts in the structures of 1 and 3, correspondingly, were studied theoretically at the DFT (PBE0-D3BJ) level using the QTAIM, ESP, ELF, NBO, and IGM methods.