Tuning the self-assembly of dendritic amphiphiles represents a major challenge for the design of advanced nanomaterials for biomimetic applications. The morphology of the final aggregates, in fact, critically depends on the primary structure of the dendritic building blocks as well as the environmental conditions. Here we report a new family of fluorinated Janus-type dendrimers (FJDs), based on a short-chain and branched fluorinated synthon with 27 magnetically equivalent fluorine atoms, linked to bis-MPA polyester dendrons of different generations. Increasing size, flexibility, and number of peripheral hydroxyl groups, we observed a peculiar self-assembly behavior in bulk and in aqueous media as a consequence of the subtle balance between their fluorinated and hydrophilic portions. The lowest generation FJDs formed spherical nanoparticles in water, e.g., micelles, showing a single 19 F NMR peak with good signal-to-noise ratio and over time stability, making them promising as 19 F-MRI traceable probes. The highest generation FJD, instead, presented an interesting morphological transition from multilamellar dendrimersomes to tubules as a consequence of a subtle balance of intraand intermolecular forces that compete at the interface. Interestingly, a reduction of the local mobility of CF 3 groups passing from dendrimersomes to tubules switches off the 19 F NMR signal. The transition mechanism has been rationalized by coarse-grain simulations as well as demonstrated by using cosolvents of different nature (e.g., fluorinated) that promote conformational changes, ultimately reflected in the self-assembly behavior. Short and branched fluorinated chains have here been demonstrated as new moieties for the design of FJDs with tunable self-assembly behavior for potential applications as biocompatible 19 F MRI probes in the construction of theranostic platforms.
Amphiphiles containing fluorinated segments tend to aggregate in the aqueous solution into structure of lower curvature than their hydrocarbon analogs due to their larger diameter. A benefit of supramolecular structures incorporating fluorine moieties is their high electron density, which can be viewed in cryo-TEM with better contrast than their hydrogenated forms. A modular approach has been developed for the synthesis of a new family of nonionic branched amphiphiles consisting of oligoglycerol units (G2) as the hydrophilic part and a branched fluorinated (F27) hydrophobic part. The design of this hydrophobic moiety allows to achieve a higher fluorine density than the previously used straight-chain perfluoroalkanes. Two different chemical approaches, amide, and triazole, are used to link the hydrophilic and hydrophobic segments. In addition, the aggregation behavior is investigated by dynamic light scattering (DLS) and cryo-TEM. The measurements prove the formation of multivesicular (MVVs) and multilamellar (MLVs) vesicles as well as smaller unilamellar vesicles. Further, the cell viability test proves the low cell toxicity of these nanoarchitectures for potential biomedical applications.
We report halogen-bonded complexes between 1-polyfluoroalkyl-3-alkylimidazolium iodides and mono-iodoperfluoroalkanes of different chain lengths or di-iodoperfluorooctane. 19 F NMR analyses revealed that the preferred stoichiometry between the donors and acceptors is 1 : 1 in the cases of the mono-iodoperfluoroalkanes, and 2 : 1 with di-iodoperfluorooctane, as a result of the monodentate behavior of the iodide anion (halogen bond acceptor). Single crystal X-ray diffraction analyses showed the presence of a perfluorinated superanion, which interdigitates with the cation fluorinated chains, favoring the formation of lamellar structures. All of the obtained supramolecular complexes exhibit enantiotropic liquid crystalline phases over a broad range of temperatures. Most of the obtained complexes show melting points lower than 100°C, two of them being liquid at room temperature, thus representing a new family of fluorinated ionic liquid crystals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.