We experimentally and theoretically studied dissociative ionization of argon dimer driven by intense femtosecond laser pulses. In the experiment, we measured the ion yield and the angular distribution of fragmental ions generated from the dissociative ionization channels of (1,1) (Ar → Ar + Ar) and (2,1) (Ar → Ar + Ar) using a cold target recoil ion momentum spectroscopy. The channel ratio of (2,1)/(1,1) is 4.5-7.5 times of the yield ratio of double ionization to single ionization of argon monomer depending on the laser intensity. The measurement verified that the ionization of Ar is greatly enhanced if there exists a neighboring Ar separated by a critical distance. In addition, the fragmental ions exhibit an anisotropic angular distribution with the peak along the laser polarization direction and the full width at half maximum becomes broader with increasing laser intensity. Using a full three-dimensional classical ensemble model, we calculated the angle-dependent multiple ionization probability of argon dimer in intense laser fields. The results show that the experimentally observed anisotropic angular distribution of fragmental ions can be attributed to the angle-dependent enhanced ionization of the argon dimer in intense laser fields.