2021
DOI: 10.29130/dubited.769092
|View full text |Cite
|
Sign up to set email alerts
|

Türkiye Demiryolu Yolcu Taşıma Talebinin Tahmini

Abstract: Günümüzde yolcu taşımacılığında demiryollarının payı giderek artmaktadır. Yolcu talebinin karşılanması için uygun planlamaların belirlenmesi gereklidir. Kapasiteyi karşılayacak planlamaların oluşturulması hem talebi karşılayacak hem de yatırımlarda uygun kararların alınmasını sağlayacaktır. Bu çalışmada, demiryolu yolcu taşımacılığı üzerinde etkili olan değişkenler kullanılarak demiryolu yolcu sayısının tahmin edilmesi amaçlanmıştır. Yolcu talebinin belirlenmesi için Çok Değişkenli Regresyon (ÇDR) analizi ve Y… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2022
2022
2024
2024

Publication Types

Select...
2
1

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
(1 citation statement)
references
References 10 publications
0
1
0
Order By: Relevance
“…As a result of the study, it has been argued that ANN is more successful than the ARIMA model in estimating unemployment, and the unemployment rate estimated by the developed model is very close to the truth. Çakır and Bolakar Tosun (2021), in this study, estimated the number of railway passengers using the variables that are effective on railway passenger transport, with Multivariate Regression (MDR) analysis and ANN models. As a result of the study, it has been argued that the most appropriate estimation is obtained by ANN and ANN can be used as a source in demand estimations.…”
Section: Artificial Neural Networkmentioning
confidence: 99%
“…As a result of the study, it has been argued that ANN is more successful than the ARIMA model in estimating unemployment, and the unemployment rate estimated by the developed model is very close to the truth. Çakır and Bolakar Tosun (2021), in this study, estimated the number of railway passengers using the variables that are effective on railway passenger transport, with Multivariate Regression (MDR) analysis and ANN models. As a result of the study, it has been argued that the most appropriate estimation is obtained by ANN and ANN can be used as a source in demand estimations.…”
Section: Artificial Neural Networkmentioning
confidence: 99%