Localization of oxytocin- and vasopressin-binding sites has so far been studied in the rat brain by means of film autoradiographs. The disposal of iodinated ligands with high specificity has allowed us to develop histoautoradiography on emulsion-coated sections and to reinvestigate on a microscopic scale the distribution of these sites in the telencephalon (septum, striatopallidal system, amygdala and hippocampus). This technique showed that oxytocin and vasopressin labelling presented distinct distributions and coincided with delimited zones, corresponding to anatomical subdivisions defined on cytoarchitectural and immunocytochemical bases. Vasopressin sites were seen in the dorsal and intermediate parts of the lateral septum and the juxtacapsular nucleus of the bed nucleus of the stria terminalis. Oxytocin sites were located in the ventral and intermediate parts of the lateral septum, the oval and the principal nuclei of the bed nucleus of the stria terminalis and the septofimbrial nucleus. In the striatopallidal system, vasopressin sites were found in the accumbens nucleus and the fundus striati, whereas oxytocin sites were in the accumbens nucleus, the head, and the posterolateral parts of the caudate-putamen, the striatal cell bridges, and the olfactory tubercle. In the amygdala, vasopressin sites were not found, but oxytocin sites were located in the central, medial, and basomedial nuclei. In the hippocampus, vasopressin sites were located in the dentate gyrus (polymorph and molecular layers), and oxytocin sites, in the subiculum (molecular and pyramidal layers) and in the field CA1 of Ammon's horn (lacunosum moleculare and pyramidal layers). The localization of the binding sites at the microscopic level permitted us to reinvestigate whether or not correlation existed in a same area between innervation, electrophysiological effects, and presence of binding sites.