An effective analysis method was developed based on a chemometric tool for the simultaneous quantification of five different post-harvest pesticides (2,4-dichlorophenoxyacetic acid (2,4-D), carbendazim, thiabendazole, iprodione, and prochloraz) in fruits and vegetables. In the modified QuEChERS (quick, easy, cheap, effective, rugged and safe) method, the factors and responses for optimization of the extraction and cleanup analyses were compared using the Plackett–Burman (P–B) screening design. Furthermore, the significant factors (toluene percentage, hydrochloric acid (HCl) percentage, and graphitized carbon black (GCB) amount) were optimized using a central composite design (CCD) combined with Derringer’s desirability function (DF). The limits of quantification (LOQs) were estimated to be 1.0 μg/kg for 2,4-D, carbendazim, thiabendazole, and prochloraz, and 1.5 μg/kg for iprodione in food matrices. The mean recoveries were in the range of 70.4–113.9% with relative standard deviations (RSDs) of less than 16.9% at three spiking levels. The measurement uncertainty of the analytical method was determined using the bottom-up approach, which yielded an average value of 7.6%. Carbendazim was most frequently found in real samples analyzed using the developed method. Consequently, the analytical method can serve as an advantageous and rapid tool for determination of five preservative pesticides in fruits and vegetables.