Abstract. Surface diffusion of interacting adsorbates is here analyzed within the context of two fundamental phenomena of quantum dynamics, namely the quantum Zeno effect and the anti-Zeno effect. The physical implications of these effects are introduced here in a rather simple and general manner within the framework of non-selective measurements and for two (surface) temperature regimes: high and very low (including zero temperature).The quantum intermediate scattering function describing the adsorbate diffusion process is then evaluated for flat surfaces, since it is fully analytical in this case. Finally, a generalization to corrugated surfaces is also discussed. In this regard, it is found that, considering a Markovian framework and high surface temperatures, the antiZeno effect has already been observed, though not recognized as such.