Objective: Obesity, particularly child obesity, is one of the most common public health problems in the world and raises the risk of end-stage renal disease. Zinc (Zn) is essential for multiple organs in terms of normal structure and function; however, effects of Zn deficiency or supplementation among young individuals with obesity have not been well studied. Methods: Weaned mice were fed high-fat diets (HFD) with varied contents of Zn (Zn deficient, adequate, and supplemented) for 3 or 6 months. This study examined associations between renal pathogenesis and dietary Zn levels, specifically assessing inflammatory pathways by utilizing P38 MAPK inhibitor SB203580. Results: HFD feeding induced typical syndromes of obesity-related renal disorders, which worsened by Zn marginal deficiency. The progression of obesity-related renal disorders was delayed by Zn supplementation. HFD induced renal inflammation, reflected by increased P38 MAPK phosphorylation along with increases of inflammatory cytokines MCP-1, IL-1b, IL-6, and TNF-a. P38 MAPK inhibition prevented renal pathological changes in mice fed with HFD and HFD/Zn deficiency. Conclusions: P38 MAPK mediated the renal inflammatory responses, which played a central role in the pathogenesis of HFD-induced renal disorders. Zn could delay the progression of obesity-related kidney disease by down-regulating P38 MAPK-mediated inflammation.