Uracil DNA glycosylase (UNG) plays a key role in DNA maintenance via base excision repair (BER). Its role is to bind to DNA, locate unwanted uracil and remove it via a base flipping mechanism. To date, kinetic analysis of this complex process has been achieved using stoppedflow analysis but, due to limitations in instrumental dead-times, discrimination of the "binding" 2 and "base flipping" steps is compromised. Herein we present a novel approach for analyzing base flipping using a microfluidic mixer and two-color two-photon (2c2p) fluorescence lifetime imaging microscopy (FLIM). We demonstrate that 2c2p FLIM can simultaneously monitor both binding and base flipping kinetics within the continuous flow microfluidic mixer, with results showing good agreement with computational fluid dynamics simulations.INTRODUCTION.