Contractions of the non-pregnant uterus play a key role in fertility. Yet, the electrophysiology underlying these contractions is poorly understood. In this paper, we investigate the presence of uterine electrical activity and characterize its propagation in unstimulated ex vivo human uteri. Multichannel electrohysterographic measurements were performed in five freshly resected human uteri starting immediately after hysterectomy. Using an electrode grid externally and an electrode array internally, measurements were performed up to 24 h after hysterectomy and compared with control. Up to 2 h after hysterectomy, we measured biopotentials in all included uteri. The median root mean squared (RMS) values of the external measurements ranged between 3.95 μV (interquartile range (IQR) 2.41–14.18 μV) and 39.4 μV (interquartile range (IQR) 10.84–105.64 μV) and were all significantly higher than control (median RMS of 1.69 μV, IQR 1.13–3.11 μV), consisting of chicken breast meat. The RMS values decreased significantly over time. After 24 h, the median RMS (1.27 μV, IQR 0.86–3.04 μV) was comparable with the control (1.69 μV, IQR 1.13–3.11 μV,
p
= 0.125). The internal measurements showed a comparable pattern over time, but overall lower amplitude. The measured biopotentials propagated over the uterine surface, following both a plane-wave as well as an erratic pattern. No clear pacemaker location nor a preferred propagation direction could be identified. These results show that ex vivo uteri can spontaneously generate propagating biopotentials and provide novel insight contributing to improving our understanding of the electrophysiology of the human non-pregnant uterus.
Electronic supplementary material
The online version of this article (10.1007/s00424-020-02426-w) contains supplementary material, which is available to authorized users.