Modern aerodynamic optimization design methods for the industrial axial compressor cascade mainly aim at improving both design point and off-design point performance. In this study, a multi-point and multi-objective optimization design method is established for the cascade, particularly aiming at widening the operating range while maintaining good performance at the acceptable expense of computational load. The design objectives are to maximize the static pressure ratio and minimize the total pressure loss coefficient at the design point, and to maximize the operating range for the positive and negative incidences. To alleviate the computational load, a design of experiment (DOE)-based GA-BP-ANN model is constructed to rapidly approximate the cascade aerodynamic performance in the optimization process. The artificial neural network (ANN) is trained by the genetic algorithm (GA) technique and back propagation (BP) algorithm, where the training cascades are sampled by the DOE method and analysed by the computational fluid dynamics method. The multi-objective genetic algorithm is used to search for a series of Pareto-optimum solutions, from which an optimal cascade is found out whose objectives are all better than (ABT) those of the original design. The ABT cascade is characterized by the lower camber and higher turning angle, leading to better aerodynamic performance in a widened operating range. Compared with the original design, the ABT cascade decreases the total pressure loss coefficient by 1.54 per cent, 23.4 per cent, and 7.87 per cent at the incidences of 5 • , −9 • , and 13 • , respectively. The established optimization design method can be extended to the three-dimensional aerodynamic design of axial compressor blade.