In our analysis of 5# and 3# end formation in plant mitochondria, we compared the major transcript ends of all mitochondrial protein-coding genes between the three Arabidopsis (Arabidopsis thaliana) accessions Columbia (Col), C24, and Landsberg erecta (Ler). Differences between transcript patterns were found for seven genes. For atp6-2, no transcripts at all were detected in Ler. This and further analyses suggest that the atp6-2 gene arrangement is absent from the mitochondrial DNA of this accession. All other transcript polymorphisms are attributed to variations at the 5# termini and were consistently observed in all tissues investigated. mRNA phenotyping of reciprocal Col/Ler, Col/C24, and Ler/C24 F 1 hybrids revealed the differing transcript patterns of ccmC to be inherited maternally, suggesting these to arise from differences in the mitochondrial DNA. Biparental inheritance was observed for the polymorphic transcripts of nad4, nad9, ccmB, and rpl5, indicating these differences to be caused by nuclear-encoded trans-factors. Deviant transcript patterns were tested in further accessions and were found in at least three additional accessions. Detailed examination of the nad4 and the nad9 transcripts demonstrates that the respective polymorphisms affect the major mRNAs of these genes. This study shows that natural genetic variation in Arabidopsis can also affect mitochondrial mRNA end processing. These variations can now be used to identify the nuclear genes responsible, as well as the mitochondrial cis-elements required, for 5# end generation of mitochondrial transcripts.