An interesting biological phenomenon that is a factor for the spread of antibiotic-resistant strains, such as MRSA, is human nasal carriage. Here, we evaluate several biological hypotheses for this problem in an effort to better understand and narrow the scope of the dominant factors that allow these bacteria to persist in otherwise healthy individuals. First, we set up and analyze a simple PDE model created to generally mimic the interactions of the microbes and nasal immune response. This includes looking at different types of diffusion and chemotaxis terms as well as different boundary conditions. Then, using sensitivity analysis, we walk through several biological hypotheses and compare to the model's results looking for persistent infection scenarios indicated by the model's bacteria component surviving over time.