Deep learning is progressively emerging as a vital tool for image reconstruction in light field microscopy. The present review provides a comprehensive examination of the latest advancements in light field image reconstruction techniques based on deep learning algorithms. First, the review briefly introduced the concept of light field and deep learning techniques. Following that, the application of deep learning in light field image reconstruction was discussed. Subsequently, we classified deep learning-based light field microscopy reconstruction algorithms into three types based on the contribution of deep learning, including fully deep learning-based method, deep learning enhanced raw light field image with numerical inversion volumetric reconstruction, and numerical inversion volumetric reconstruction with deep learning enhanced resolution, and comprehensively analyzed the features of each approach. Finally, we discussed several challenges, including deep neural approaches for increasing the accuracy of light field microscopy to predict temporal information, methods for obtaining light field training data, strategies for data enhancement using existing data, and the interpretability of deep neural networks.