2015
DOI: 10.1016/j.ifacol.2015.06.131
|View full text |Cite
|
Sign up to set email alerts
|

Two-Phase Approach to the Nesting problem with continuous rotations

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
5
0
2

Year Published

2017
2017
2022
2022

Publication Types

Select...
4
2

Relationship

0
6

Authors

Journals

citations
Cited by 7 publications
(7 citation statements)
references
References 8 publications
0
5
0
2
Order By: Relevance
“…These solutions can be used as an upper bound for the irregular strip packing problem with continuous rotations. Furthermore, many studies heuristically address the irregular strip packing problem considering continuous piece rotations to find good upper bounds [18,20].…”
Section: Boundsmentioning
confidence: 99%
See 1 more Smart Citation
“…These solutions can be used as an upper bound for the irregular strip packing problem with continuous rotations. Furthermore, many studies heuristically address the irregular strip packing problem considering continuous piece rotations to find good upper bounds [18,20].…”
Section: Boundsmentioning
confidence: 99%
“…Rocha et al [19] represented the pieces by sets of overlapping circles, aiming to achieve a certain degree of approximation while minimizing the necessary number of circles, allowing for any possible rotation. Rocha et al [20] proposed a two-phase approach to the nesting problem with continuous rotations based on a common compaction strategy which relies on the observable concept that the core structure of a layout is usually defined by the position and orientation of its largest pieces. Liao et al [18] proposed an algorithm to allocate irregular pieces in a rectangular sheet without overlapping based on the rubber band packing algorithm.…”
Section: Introductionmentioning
confidence: 99%
“…The phi-function verifies overlap between items using mathematical equations defined over their dimensions. We can also highlight the studies carried out by Jones (2014) and Rocha et al (2015) in which overlapping is detected using circles placed inside the items.…”
Section: Computational Geometrymentioning
confidence: 99%
“…Quando os itens incluem bordas curvas, é comum aproximá-los por um polígono envolvente, em que uma série de tangentes à curva formam as bordas poligonais (veja um exemplo de um círculo aproximado por um polígono na Figura 4). Alguns trabalhos permitem que as bordas curvas sejam representadas em sua forma original e, para isto, os itens são representados como a união ou intersecção de objetos chamados primários, ou seja, círculos, retângulos, polígonos regulares, polígonos convexos e o complemento destas formas (STOYAN et al, 2001; Em outros trabalhos, a representação dos itens é feita pela inscrição ou cobertura de alguns círculos em cada item (JONES, 2013;ROCHA et al, 2015), veja um exemplo na Figura 7.…”
Section: Representação Dos Itensunclassified
“…• Uma ideia parecida à apresentada em (JONES, 2013) é usada em (ROCHA et al, 2015). Neste artigo, é apresentada uma abordagem para o ISPP que compacta os itens grandes em uma primeira fase, enquanto que em uma segunda fase, aloca os itens pequenos restantes entre os itens grandes, compactando todos os itens.…”
Section: Programação Não-linearunclassified