Textile integrable large-scale on-chip energy storages and solar energy storages take a significant role in the realization of next-generation primary wearable devices for sensing, wireless communication, and health tracking. In general, these energy storages require major features like mechanical robustness, environmental friendliness, high-temperature tolerance, inexplosive nature, and long-term storage duration. Here we report on large-scale laser-printed graphene supercapacitors of dimension 100 cm
2
fabricated in 3 minutes on textiles with excellent water stability, an areal capacitance, 49 mF cm
−2
, energy density, 6.73 mWh/cm
−2
, power density, 2.5 mW/cm
−2
, and stretchability up to 200%. Further, a demonstration is given for the textile integrated solar energy storage with stable performance for up to 20 days to reach half of the maximum output potential. These cost-effective self-reliant on-chip charging units can become an integral part for the future electronic and optoelectronic textiles.