In this paper, we present the first stochastic process to describe the interaction of predator and prey populations with sexual reproduction. Specifically, we introduce a two-type two-sex controlled branching model. This process is a two-type branching process, where the first type corresponds to the predator population and the second one to the prey population. While each population is described via a two-sex branching model, the interaction and survival of both groups is modelled through control functions depending on the current number of individuals of each type in the ecosystem. In view of their potential for the conservation of species, we provide necessary and sufficient conditions for the ultimate extinction of both species, the fixation of one of them and the coexistence of both of them. Moreover, the description of the present predator–prey two-sex branching process on the fixation events can be performed in terms of the behaviour of a one-type two-sex branching process with a random control on the number of individuals, which is also introduced and analysed.