With the innovation of global trade business models, more and more foreign trade companies are transforming and developing in the direction of cross-border e-commerce. However, due to the limitation of platform language processing and analysis technology, foreign trade companies encounter many bottlenecks in the process of transformation and upgrading. From the perspective of the semantic matching efficiency of e-commerce platforms, this paper improves the logical and technical problems of cross-border e-commerce in the operation process and uses semantic matching efficiency as the research object to conduct experiments on the QQP dataset. We propose a graph network text semantic analysis model TextSGN based on semantic dependency analysis for the problem that the existing text semantic matching method does not consider the semantic dependency information between words in the text and requires a large amount of training data. The model first analyzes the semantic dependence of the text and performs word embedding and one-hot encoding on the nodes (single words) and edges (dependencies) in the semantic dependence graph. On this basis, in order to quickly mine semantic dependencies, an SGN network block is proposed. The network block defines the way of information transmission from the structural level to update the nodes and edges in the graph, thereby quickly mining semantics dependent information allows the network to converge faster, train classification models on multiple public datasets, and perform classification tests. The experimental results show that the accuracy rate of TextSGN model in short text classification reaches 95.2%, which is 3.6% higher than the suboptimal classification method; the accuracy rate is 86.16%, the
F
1
value is 88.77%, and the result is better than other methods.